# HUMIMIC-InHALES—A Human-Relevant Aerosol Test Platform for **Systemic Exposure Studies**

Katharina Schimek<sup>1</sup>, Kasper Renggli<sup>2</sup>, Sandro Steiner<sup>1</sup>, Felix Rambo<sup>1</sup>, Antonin Sandoz<sup>2</sup>, Eva Maria Dehne<sup>1</sup>, David Bovard<sup>2</sup>, Hendrik Erfurth<sup>1</sup>, Beren Ataç Wagegg<sup>1</sup>, Arkadiusz Kuczaj<sup>2</sup>, Reyk Horland<sup>1</sup>, Uwe Marx<sup>1</sup>, and Julia Hoeng<sup>2</sup>.

<sup>1</sup>TissUse GmbH, Oudenarder Str. 16, 13347, Berlin, Germany; <sup>2</sup> PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland

## Background

- The delivery kinetics of volatile particles and those of different sizes vary among distinct regions of the human respiratory tract [1, 2, 3]. Available in vitro aerosol exposure systems fail to capture this complexity [4, 5]. Therefore, the aerosol fractions they deliver to cell cultures are not, or only partly, representative of the *in vivo* situation.
- This might decrease the relevance of *in vitro* aerosol exposure experiments, especially when using complex cell cultures that are able to respond to physical and chemical stimuli in a highly differentiated manner.
- We developed an *in vitro* aerosol exposure system that mimics the structural and functional aspects of the human respiratory tract—the Independent Holistic Air–Liquid Exposure System (InHALES) [6].
  - *Independent:* It is capable of operating and actively inhaling aerosols and smoking cigarettes.
  - Holistic: It consists of modules that represent the relevant regions of the respiratory tract; the prototype consists of the oral cavity, laryngopharynx, trachea, bronchi, bronchioles, and lung lumen.



SSUSE Emulating Human Biology

- The logical combination of aerosol delivery testing for advanced cell culture systems and cutting-edge microfluidics microphysiological systems (MPS) enables physical mimicry of interconnections among cell types and systemic delivery of aerosols.
- The technology allows for flexible and customized combinations of different tissue constructs or organ equivalents on a chip-based MPS.
- Air-liquid exposure system: It is designed for aerosol exposures at the airliquid interface.
- Recently, a prototype of the system was built (Figure 1) to implement TissUse's proprietary commercial HUMIMIC microfluidic platform. The HUMIMIC MPS technology can maintain and culture miniaturized organs, emulating the biological function of their respective full-size counterparts over long periods.

#### The HUMIMIC-InHALES system



### Test Exposure, Results, and Discussion

8088

pumps

(4–5

aerosol

Deep

**Test exposure settings:** The system "puffed" and "inhaled" a fluorescent test aerosol (a nebulized mixture of propylene glycol [PG], glycerol [G], and water, labeled with disodium fluorescein [DSF]) The puffing process was repeated 4–5 times, and 60 puffs were delivered each repetition. Two exposure protocols were applied:

Shallow inhalation (see Figure 1.5): 1200 mL residual

| Aerosol delivery was     | Α                  |
|--------------------------|--------------------|
| investigated by exposing |                    |
| samples of 300 µL        |                    |
| phosphate-buffered       |                    |
| saline (PBS) followed by | 9 /cm <sup>2</sup> |
| quantification of DSF by |                    |
| fluorometry (Figure 3)   |                    |



#### **Conclusions:**

- The system's applicability for controlled aerosol delivery—especially in combination with biological test systems-was demonstrated.
- No system-related adverse effects of exposure were detected, and changes in system settings or test aerosols translate into differential biological responses

- volume in lung pumps; 2-second puff generation; immediate puff inhalation during 1 second, along with 500 mL clean air; 2 empty inhalations (no puffing) within 6 seconds.
- **Deep inhalation** (Figure 2): 1200 mL residual volume in lung pumps; 2-second puff generation; immediate puff inhalation during 1 second, along with 4600 mL clean air.

During exposure, the complete system was at 37 °C, and inhaled air was brought to a relative humidity of 95%.





Figure 4: Biological responses to the test exposures: A) and **B)** H&E-stained EpiOral tissues exposed under shallow inhalation or deep inhalation settings, respectively. C) and D) H&E-stained MucilAir<sup>™</sup> tissue patches. E) and F) A549 cultures stained for nucleic acids (Hoechst, blue) and F-actin (phalloidin, green). PG/Gexposed tissues were selected as an example.

The research described in this poster was sponsored by Philip Morris International.

Contact: kasper.renggli@pmi.com

- Aerosol delivery within the system is stable and repeatable within the expected range. The geometry of the pump inlets is optimized, which is expected to increase the uniformity and repeatability of the aerosol delivery.
- The feasibility of air-liquid interface culture and transfer of the novel cell culture insert onto the chip is established.
- The next step is to test the newly developed tracheobronchial-airway HUMIMIC-Chip with InHALES.

#### **References:**

1. Carvalho TC, Peters JI, Williams RO. Int J Pharmaceut 2011, 406(1–2):1-10. 2. Heyder J. *Proceedings of the American Thoracic Society* 2004, **1**(4):315-320. 3. Pankow JF. Chem Res Toxicol 2001, 14(11):1465-1481. 4. Thorne D, Adamson J. *Exp Toxicol Pathol* 2013, **65**(7):1183-1193. 5. Paur HR, Mulhopt S, Weiss C, Diabate S. J Verbrauch Lebensm 2008, 3(3):319-329. 6. Hervé, P. Master Thesis at the école d'ingénieurs CESI, Saint-Nazaire, 2017 7.Ochs M, Weibel ER (eds.). McGraw-Hill; 2008. 8. Nordlund M, Belka M, Kuczaj AK, et al. Inhalation toxicology 2017, 29(3):113-125. 9. Zhang YS, Zhang Y-N, Zhang W. Drug Discovery Today 2017, 22:1392-1399.